# ФГБОУ ВО «Пензенский государственный университет» Демонстрационный вариант

# тестовых заданий для вступительных испытаний по информатике 2019 г.

## Задание 1. (2 балла)

- 1. Укажите все основания систем счисления до 11, в которых запись числа 29 оканчивается на 2.
- **1**) 9
- **2**) 5
- **3**) 7
- **4**)

## Задание 2. (2 балла)

1. Сколько единиц в двоичной записи числа 202?

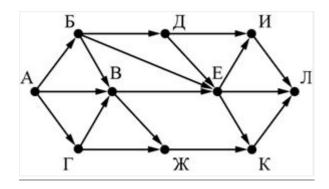
#### Задание 3. (1 балл)

- 1. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
  - 1) Строится двоичная запись числа N.
  - 2) К этой записи дописываются справа ещё два разряда по следующему правилу:
  - а) складываются все цифры двоичной записи числа N, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;
  - б) над этой записью производятся те же действия справа дописывается остаток от деления суммы её цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

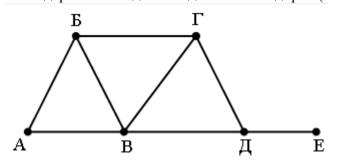
Укажите минимальное число R, которое превышает число 63 и может являться результатом работы данного алгоритма. В ответе это число запишите в десятичной системе счисления.

## Задание 4. (2 балла)


1. Вычислите сумму чисел х и у, при х= A7<sub>16</sub>, у= 64<sub>8</sub>. Результат представьте в двоичной системе счисления.

## Задание 5. (1 балл)

1. В кодировке Unicode на каждый символ отводится два байта. Определите информационный объем слова из двадцати трех символов в этой кодировке.


#### Задание 6.(6 баллов)

1. На рисунке представлена схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К, Л. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город Л?



## Задание 7. (3 балла)

1. На рисунке схема дорог Н-ского района изображена в виде графа; в таблице справа содержатся сведения о длинах этих дорог (в километрах)



|    | П1 | П2 | П3 | Π4 | П5 | П6 |
|----|----|----|----|----|----|----|
| П1 |    |    |    | 4  |    |    |
| П2 |    |    | 7  | 15 | 12 | 6  |
| П3 |    | 7  |    |    |    | 5  |
| Π4 | 4  | 15 |    |    | 20 |    |
| П5 |    | 12 |    | 20 |    | 10 |
| П6 |    | 6  | 5  |    | 10 |    |

Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова длина дороги из пункта Б в пункт В. В ответе запишите целое число — так, как оно указано в таблице.

## Задание 8. (4 балла)

1. Дан фрагмент таблицы истинности выражения F.

| <b>x</b> 1 | x2 | х3 | x4 | x5 | х6 | x7 | x8 | F |
|------------|----|----|----|----|----|----|----|---|
| 1          | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1 |
| 1          | 0  | 1  | 0  | 1  | 1  | 0  | 1  | 1 |
| 0          | 1  | 0  | 1  | 1  | 0  | 1  | 1  | 0 |

Каким выражением может быть F?

- 1)  $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land x7 \land x8$
- 2)  $\neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5 \lor \neg x6 \lor x7 \lor \neg x8$
- 3)  $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7 \land x8$
- 4)  $x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor x6 \lor \neg x7 \lor \neg x8$

## Задание 9. (5 баллов)

1. Ниже представлены две таблицы из базы данных. Каждая строка таблицы 2 содержит информацию о ребёнке и об одном из его родителей. Информация представлена

значением поля ID в соответствующей строке таблицы 1. Определите на основании приведённых данных фамилию и инициалы тёти Цейса Б.Б.

Пояснение: тётей считается родная сестра отца или матери.

| Таблица 1 |              |     | Таблица 2   |            |  |
|-----------|--------------|-----|-------------|------------|--|
| ID        | Фамилия_И.О. | Пол | ID_Родителя | ID_Ребёнка |  |
| 34        | Пунтус И.Ф.  | Ж   | 44          | 45         |  |
| 44        | Цейс А.Б.    | M   | 64          | 45         |  |
| 45        | Цейс Б.А.    | M   | 45          | 46         |  |
| 46        | Цейс Б.Б.    | M   | 84          | 46         |  |
| 54        | Кот Р.А.     | Ж   | 44          | 54         |  |
| 55        | Кот А.П.     | Ж   | 64          | 54         |  |
| 56        | Кот П.С.     | M   | 54          | 55         |  |
| 64        | Величко М.М. | Ж   | 56          | 55         |  |
| 65        | Величко М.Р. | M   | 34          | 56         |  |
| 66        | Хитрово Е.Л. | Ж   | 54          | 66         |  |
| 67        | Хитрово А.Е. | M   | 56          | 66         |  |
| 74        | Таран Н.Б.   | Ж   | 45          | 74         |  |
| 84        | Талдий З.Д.  | Ж   | 84          | 74         |  |
| • • •     |              |     |             |            |  |

#### Задание 10. (2 балла)

1. Перемещаясь из одного каталога в другой, пользователь последовательно посетил каталоги USER, SCHOOL, A:\, LETTER, INBOX, DOC. Каково полное имя каталога, из которого начал перемещение пользователь? Примечание: при каждом перемещении пользователь либо спускался в каталог на уровень ниже, либо поднимался на уровень выше.

## Задание 11. (4 балла)

- 1. Для групповых операций с файлами используются маски имен файлов. Маска представляет собой последовательность букв, цифр и прочих допустимых в именах файлов символов, в которых также могут встречаться следующие символы: Символ «?» (вопросительный знак) означает ровно один произвольный символ. Символ «\*» (звёздочка) означает любую последовательность символов произвольной длины, в том числе «\*» может задавать и пустую последовательность. Определите, какое из указанных имен файлов удовлетворяет маске: b\*a\*c?.c?\*
  - 1) bacc.cpp
  - **2**) bac.cpp
  - 3) bacc.c
  - **4)** blarc.cpp

#### Задание 12. (5 баллов)

- 1. У исполнителя Калькулятор две команды, которым присвоены номера:
  - 1. прибавь 3
  - 2. умножь на 4

Выполняя первую из них, Калькулятор прибавляет к числу на экране 3, а выполняя вторую, умножает его на 4. Запишите порядок команд в программе получения из 3 числа 57, содержащей не более 6 команд, указывая лишь номера команд. (Например, программа 21211 – это программа:

```
умножь на 4 прибавь 3 умножь на 4 прибавь 3 прибавь 3, которая преобразует число 2 в 50.)
```

## Задание 13. (4 балла)

1. Из ячейки E5 в ячейку D4 была скопирована формула = B3 \* C\$4. Какой вид приобретет формула?

Примечание: знак \$ используется для обозначения абсолютной адресации.

#### Задание 14. (6 баллов)

1. Запишите число, которое будет напечатано в результате выполнения следующей программы. Для Вашего удобства программа представлена на пяти языках программирования.

| Бейсик                        | Python             |
|-------------------------------|--------------------|
| DIM S, N AS INTEGER           | s = 0              |
| S = 0                         | n = 0              |
| N = 0                         | while $s < 71$ :   |
| WHILE S < 71                  | s = s + 10         |
| S = S + 10                    | n = n + 2          |
| N = N + 2                     | print(n)           |
| WEND                          |                    |
| PRINT N                       |                    |
| Алгоритмический язык          | Паскаль            |
| <u>алг</u>                    | var s, n: integer; |
| <u>нач</u>                    | begin              |
| <u>цел</u> n, s               | s := 0;            |
| n := 0                        | n := 0;            |
| s := 0                        | while $s < 71$ do  |
| <u>нц пока</u> s < 71         | begin              |
| s := s + 10                   | s := s + 10;       |
| n := n + 2                    | n := n + 2         |
| <u>кц</u>                     | end;               |
| <u>вывод</u> п                | writeln(n)         |
| кон                           | end.               |
| Си                            |                    |
| #include <stdio h=""></stdio> |                    |

```
#include<stdio.h> int main() { int s = 0, n = 0; while (s < 71) { s = s + 10; n = n + 2; } printf("%d\n", n); return 0; }
```

## Задание 15. (6 баллов)

1. В программе используется одномерный целочисленный массив A с индексами от 0 до 9. Значения элементов равны 8, 4, 3, 0, 7, 2, 1, 5, 9, 6 соответственно, т.е. A[0] = 8, A[1] = 4 и т.д.

Определите значение переменной **s** после выполнения следующего фрагмента программы (*записанного ниже на разных языках программирования*).

| Бейсик                           | Python               |
|----------------------------------|----------------------|
| s = 0                            | s = 0                |
| FOR $j = 0$ TO 9                 | for j in range(10):  |
| IF $A(j) \le 4$ THEN             | if A[j] <= 4:        |
| s = j                            | s = j                |
| ENDIF                            |                      |
| NEXT j                           |                      |
| Алгоритмический язык             | Паскаль              |
| s := 0                           | s := 0;              |
| <u>нц для j от</u> 0 <u>до</u> 9 | for $j := 0$ to 9 do |
| <u>если</u> A[j] <= 4 <u>то</u>  | if $A[j] \le 4$ then |
| s := j                           | s := j;              |
| <u>BCe</u>                       |                      |
| <u>кц</u>                        |                      |
| Си                               |                      |
| s = 0;                           |                      |
| for $(j = 0; j \le 9; j++)$      |                      |
| $if (A[j] \le 4)$                |                      |
| s = j;                           |                      |

## Задание 16. (7 баллов)

1. Ниже на пяти языках программирования записана рекурсивная функция (процедура) F.

| Бейсик                                                                                      | Python                                                                  |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| SUB F(n)                                                                                    | def F(n):                                                               |
| PRINT n,                                                                                    | print(n, end=")                                                         |
| IF $n \ge 2$ THEN                                                                           | if $n \ge 2$ :                                                          |
| F(n-2)                                                                                      | F(n-2)                                                                  |
| F(n-1)                                                                                      | F(n-1)                                                                  |
| F(n-2)                                                                                      | F(n-2)                                                                  |
| END IF                                                                                      |                                                                         |
| END SUB                                                                                     |                                                                         |
|                                                                                             |                                                                         |
| Алгоритмический язык                                                                        | Паскаль                                                                 |
| Алгоритмический язык<br>алг F(цел n)                                                        | Паскаль procedure F(n: integer);                                        |
| -                                                                                           |                                                                         |
| <u>алг</u> F( <u>цел</u> n)                                                                 | procedure F(n: integer);                                                |
| <u>алг</u> F( <u>цел</u> n)<br><u>нач</u>                                                   | procedure F(n: integer);<br>begin                                       |
| алг F(цел n)<br>нач<br>вывод n                                                              | procedure F(n: integer); begin write(n);                                |
| <u>алг</u> F( <u>цел</u> n) <u>нач</u> <u>вывод</u> n <u>если</u> n >= 2 <u>то</u>          | <pre>procedure F(n: integer); begin   write(n); if n &gt;= 2 then</pre> |
| <u>алг</u> F( <u>цел</u> n) <u>нач</u> <u>вывод</u> n <u>если</u> n >= 2 <u>то</u> F(n - 2) | procedure F(n: integer); begin write(n); if n >= 2 then begin           |

| <u>кон</u>                  | end  |
|-----------------------------|------|
|                             | end; |
| Си                          |      |
| void F(int n) {             |      |
| <pre>printf("%d", n);</pre> |      |
| $if (n >= 2) {$             |      |
| F(n - 2);                   |      |
| F(n - 1);                   |      |
| F(n-2);                     |      |
| }                           |      |
| }                           |      |

Что выведет программа при вызове F(3)? В ответе запишите последовательность выведенных цифр слитно (без пробелов).

## Задание 17. (6 баллов)

- 1. По каналу связи передаются сообщения, каждое из которых содержит 10 букв A, 5 букв Б, 20 букв B и 5 букв  $\Gamma$  (других букв в сообщениях нет). Каждую букву кодируют двоичной последовательностью. При выборе кода учитывались два требования:
  - а) ни одно кодовое слово не является началом другого (это нужно, чтобы код допускал однозначное декодирование),
  - б) общая длина закодированного сообщения должна быть как можно меньше. Какой код из приведённых ниже следует выбрать для кодирования букв A, Б, В и Г?
  - **1**) A:1, Ε:01, Β:001, Γ:111
  - **2**) A:00, Б:01, Β:10, Γ:11
  - **3**) A:0, δ:10, B:11, Γ:111
  - **4**) A:10, Б:111, B:0, Γ:110

#### Задание 18. (3 балла)

1. Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 320×640 пикселей при условии, что в изображении могут использоваться 16 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.

#### Задание 19. (3 балла)

- 1. Музыкальный фрагмент был записан в формате стерео (двухканальная запись), оцифрован и сохранён в виде файла без использования сжатия данных. Размер полученного файла 40 Мбайт. Затем тот же музыкальный фрагмент был записан повторно в формате моно и оцифрован с разрешением в 3 раза выше и частотой дискретизации в 5 раз меньше, чем в первый раз. Сжатие данных не производилось. Укажите размер файла в Мбайт, полученного при повторной записи.
  - **1**) 12 Мбайт
  - **2**) 48 Мбайт
  - **3**) 33 Мбайт
  - **4)** 300 Мбайт

## Задание 20. (3 балла)

1. В терминологии сетей TCP/IP маской сети называется двоичное число, определяющее, какая часть IP-адреса узла сети относится к адресу сети, а какая – к адресу самого узла в этой сети. Обычно маска записывается по тем же правилам, что и IP-адрес. Адрес сети

получается в результате применения поразрядной конъюнкции к заданному IP-адресу узла и маске.

По заданным ІР-адресу узла и маске определите адрес сети.

IP-адрес узла: 194.128.208.64 Маска: 255.255.224.0

При записи ответа выберите из приведённых в таблице чисел четыре элемента IP-адреса сети и запишите в нужном порядке соответствующие им буквы без использования точек.

| A | В  | С   | D   | Е   | F   | G   | Н   |
|---|----|-----|-----|-----|-----|-----|-----|
| 0 | 64 | 128 | 192 | 194 | 208 | 224 | 255 |

Пример.

Пусть искомый ІР-адрес: 192.168.128.0, и дана таблица

| A   | В   | C   | D | E   | F | G  | Н   |
|-----|-----|-----|---|-----|---|----|-----|
| 128 | 168 | 255 | 8 | 127 | 0 | 17 | 192 |

В этом случае правильный ответ будет записан в виде: НВАГ

## Задание 21. (3 балла)

- 1. Дано A=357<sub>8</sub>, B=FA<sub>16</sub>. Какое из чисел C, записанных в двоичной системе, отвечает условию A<C<B?
  - **1**) 11111010<sub>2</sub>
  - **2)** 11011000<sub>2</sub>
  - **3)** 11101111<sub>2</sub>
  - **4)** 11111000<sub>2</sub>

#### Задание 22. (2 балла)

1. Игорь составляет таблицу кодовых слов для передачи сообщений, каждому сообщению соответствует своё кодовое слово. В качестве кодовых слов Игорь использует 5-буквенные слова, в которых есть только буквы П, И, Р, причём буква П появляется ровно 1 раз. Каждая из других допустимых букв может встречаться в кодовом слове любое количество раз или не встречаться совсем. Сколько различных кодовых слов может использовать Игорь?

#### Задание 23. (4 баллов)

1. Автомобильный номер состоит из 7 символов: четырёх цифр, за которыми следуют 3 буквы. Допустимыми символами считаются 7 цифр (кроме нуля, 6 и 9) и 6 заглавных букв: А, Е, К, М, О, Т. Для хранения каждой из цифр используется одинаковое и наименьшее возможное количество бит. Аналогично, для хранения каждой из букв используется одинаковое и наименьшее возможное количество бит. При этом количество бит, используемых для хранения одной буквы и одной цифры, может быть разным. Для хранения каждого номера используется одинаковое и минимально возможное количество байт. Сколько байт памяти потребуется для хранения 200 автомобильных номеров? Номера хранятся без разделителей.

## Задание 24. (6 баллов)

1. На числовой прямой даны два отрезка: P = [2, 42] и Q = [22, 62]. Выберите из предложенных отрезков такой отрезок A, что логическое выражение

$$((x \in P) \rightarrow \neg (x \in Q)) \rightarrow \neg (x \in A)$$

тождественно истинно, то есть принимает значение 1 при любом значении переменной х.

- **1**) [3, 14]
- **2**) [23, 32]
- **3**) [43, 54]
- **4**) [15, 45]

#### Задание 25. (2 балла)

1. В таблице приведены запросы к поисковому серверу. Расположите обозначения запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу.

Для обозначения логической операции "ИЛИ" в запросе используется символ |, а для логической операции "И" – &.

- 1) подтягивания & отжимания
- 2) подтягивания отжимания
- 3) физкультура & подтягивания & отжимания
- 4) подтягивания | отжимания | тренировка

## Задание 26. (8 баллов)

1. Сколько существует различных наборов значений логических переменных x1, x2, ... x11, которые удовлетворяют всем перечисленным ниже условиям?

$$\neg(x1 \equiv x2) \land ((x1 \land \neg x3) \lor (\neg x1 \land x3)) = 0$$

$$\neg(x2 \equiv x3) \land ((x2 \land \neg x4) \lor (\neg x2 \land x4)) = 0$$
...
$$\neg(x9 \equiv x10) \land ((x9 \land \neg x11) \lor (\neg x9 \land x11)) = 0$$

В ответе <u>**не нужно**</u> перечислять все различные наборы значений переменных x1, x2, ... x11, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.